
Amazing 1hour-Apps



Create an amazing App
in less than 1 hour



Thousands of amazing 
visuals & scripts exist…

…to keep up, we don’t 
need to re-invent the 
wheel…

…we only need to 
integrate them into DNN

We believe in low hanging fruits



So let’s create a DNN TimelineJS



…but better

1. Timeline scripts exist – “free lunch”
1. Responsive
2. Image, Text, Video, Google Map, etc.

2. Data functionality exists – “free lunch”
1. Data input, storage, versioning
2. Multi-language
3. Data output as JSON
4. DNN-Search integrated

3. All we have to do is combine this 



Presented by 2sic (creators of 2sxc)

18 DNN Pros
loving web technologies

since 1999



Let’s work!



Materials and Technology



All Open Source Software

 TimelineJS 2.3+ (MPL 2.0)
 http://timeline.knightlab.com/
 https://github.com/NUKnightLab/TimelineJS

 DNN 7.2+ (MIT)
 http://dnnsoftware.com
 https://dotnetnuke.codeplex.com/

 2sxc / 2SexyContent 6+ (MIT)
 http://2sexycontent.org/
 https://github.com/2sic/2SexyContent

http://timeline.knightlab.com/
https://github.com/NUKnightLab/TimelineJS
http://dnnsoftware.com/
https://dotnetnuke.codeplex.com/
http://2sexycontent.org/
https://github.com/2sic/2SexyContent


Technologies

1. DNN & 2sxc Out-Of-The-Box
2. A bit of HTML
3. A tiny bit of ASP.net Razor
4. JSON for data-transport
5. Some JavaScript for attaching the default 

2sxc-JSON-format to the Timeline JS



The few steps



Easy and amazingly quick

In DNN / 2SexyContent

1. Create App
2. Configure Content-

Types based on what 
the script needs

3. Enable JSON data-
publishing in code (so it 
will always work)

In HTML / JavaScript

1. Integrate TimelineJS
2. Setup JSON-call to get 

data
3. Tie up data to the 

TimelineJS
4. Add some edit-buttons 

for the full user 
experience



We need the following data

Timeline Entries

1. Headline (text)
2. Start Date & End Date 

(dates)
3. Body (text, formatted)
4. Media (image, video, 

tweet, address, …)
5. Credit, Caption (texts)

Minimal Configuration (optional)

1. Language (many exist)
2. Where to start 

(beginning/end)
3. Start Zoom

Live work



Continue with the View

1. Create the Razor view-file
1. set types for content, header, configuration

2. Add records of data in list-management
3. Integrate the TimelineJS with Client-

Dependency
4. Integrate the 2sxc-controller with Client-

Dependency
5. Activate data-publishing

Live work



Connect JSON to TimelineJS

1. Write the bit of JS code to retrieve data
2. Write the callback to re-map the data
3. Attach remapped data to Timeline JS

Live work



Temporary Summary



Status Quo

 Data editing works
 Output works

 Could be even better
 editing from the inside the timeline 
would be sexy
 Requires Edit-Button
 Requires Add-After-Button on every record



Add inline-editing 

1. Use the 2sxc-controller to provide the 
buttons

1. that’s it 

Live work



Let’s Package & Distribute



Simple steps

1. Create Package
2. Install in another portal to test
3. done 

Live work



Questions



SEO and JavaScript Apps

1. Either output the relevant data as HTML, 
then hide it when the JS loads

2. Or output it as HTML, then convert it to a 
JS-object when it loads (avoids re-loading 
in JSON but more work)

3. Or use the Hashbang-Notation #!
1. You can even use this without sub-pages, 

because the root-Hashbang is also allowed
<meta name="fragment" content="!">

4. Pushstate may work one day…



AngularJS vs. knockoutJS

1. Both are great
2. AngularJS is more powerfull, more feature-

rich, better developed, has more support
3. knockoutJS is easier, simpler, less pattern-

development-style

Start with either, when things get complex 
(many views…) you’ll probably migrate to 
AngularJS (we’re currently using KO but moving 
to Angular)



App-Catalog

 Goal is to provide many free Apps
 The ecosystem needs free-stuff
 maybe we’ll add a payment option, but 

that’s low priority, especially because most 
work is meant for re-use (MIT-style)



Content vs. App

 Content is the bread-and-butter, the ersatz-
wysiwyg
 Simple texts, images, headlines, various 

arrangements, etc.
 Apps are “sealed” functionalities

 add/remove without side-effects
 own views, own routes, own data
 own configuration, ml-resources, etc.
 by default, they cannot access data from other 

apps



Ideas for Apps

1. Image galleries
2. Books like http://www.turnjs.com
3. Interactive FAQs with searches and more
4. Floor-Plans
5. Tab-Style presentations
6. Interactive Animations
7. Mapping-Tools with various configurations
8. Configure JSs like Feed-readers…
9. GTM-Integration…

http://www.turnjs.com/


Enable JSON by code

@functions
{
public override void CustomizeData()
{

// enable publishing
Data.Publish.Enabled = true;
Data.Publish.Streams = 
"Default,UIResources";

}
}


